

UtBot(a) Home:

Uso do robô Pioneer 3-AT com sensores Kinect, acelerômetro e giroscópio em tarefas de navegação doméstica.

André Schneider de Oliveira (andre@dainf.ct.utfpr.edu.br), João Alberto Fabro(fabro@utfpr.edu.br), Rodrigo Longhi Guimarães (rguimaraes@alunos.utfpr.edu.br), Thiago Becker (beckerthiago@gmail.com)

UTFPR – Universidade Tecnológica Federal – Paraná – Curitiba, Brasil LASER – Laboratório Avançado de Sistemas Embarcados e Robótica – Paraná – Curitiba, Brasil

CBR 2015

O robô Pioneer 3-AT, equipado de alguns **sensores** extras e provido de um software de controle chamado ROS(Robot Operating System)[1], tem por objetivo desempenhar algumas tarefas da iniciativa Robocup@Home[2]. São elas:

- 1 Follow me[3]: Identificar e seguir uma pessoa, desviando de obstáculos e não confundindo a pessoa a ser seguida com as demais pessoas do ambiente; e
- 2 Síntese de Voz: Interagir com uma pessoa, tanto recebendo comandos da pessoa por voz quanto passando informações para essa pessoa também por meio da voz.
- 3 **Zoo**: Nessa categoria, de provas especiais, o Pioneer 3-AT pretende demonstrar sua capacidade de visualização 3D de ambientes e também de navegação autônoma.

Hardware

Figura 1 - UtBot

robô mostra UtBot@Home, robô móvel um construído a partir do Pioneer 3-AT[4]. Trata-se de um robô com 4 rodas de borracha que pesa 12kg e mede 497mm de comprimento, 508mm de largura e 277mm de altura.

Na construção do UtBot foram adicionados **sensores** essenciais para o desempenho das tarefas já sendo citadas, eles sonar, acelerômetro, giroscópio e um Microsoft Kinect, sensor movimento. Integrando todos esses sistema sensores com robótico operacional está um arduino, microcontrolador simples que faz a leitura dos sensores e comunicação com o computador.

Visualização Tridimensional de Ambientes

Usando de dados extraídos do sensor Microsoft Kinect[5] e de técnicas avançadas de mapeamento de ambientes providas pelo pacote octomap[7] do ROS, foi desenvolvido um sistema de visão em tempo real do ambiente a partir da representação em voxels dos dados do Kinect. Essa representação é metricamente correta e possibilita uma visualização facilmente identificável pelos seres humanos do ambiente no qual o robô está inserido, além de possibilitar a fácil integração de dados tridimensionais em mapas de custo bidimensionais para navegação autônoma.

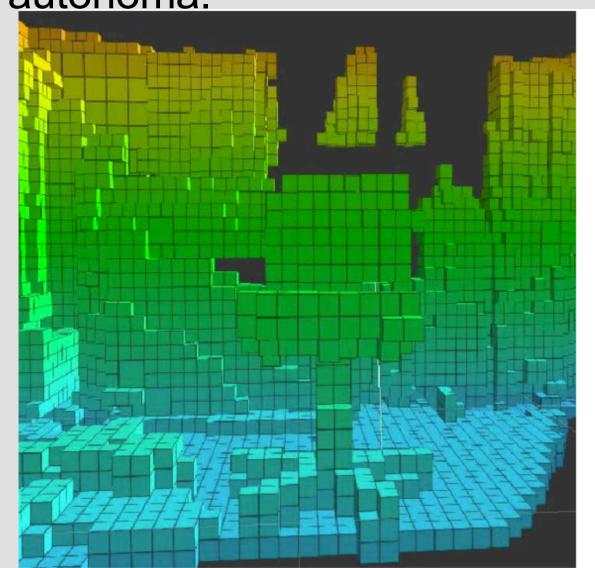


Figura 2 – Representação em voxels da imagem gerada pelo Kinect a partir dos dados de profundidade gerados pelo próprio Kinect.

Visão geral do sistema:

A figura 3 ilustra o funcionamento do sistema quando ativado o modo teleoperação, mas esse funcionamento é análogo na grande maioria das funções do robô: especificamente nesse caso, os dados do controle são lidos por bluetooth pelo computador integrado ao robô, que roda o ROS. A partir da leitura, esse computador toma atitudes e move o robô por comandos seriais. Ao mesmo tempo, ele interpreta a leitura dos sensores, conform mostrados na Figura 4 e passa os dados gerados pelo pacote octomap, de visualização 3D, para um computador externo, capaz de exibir os dados graficamente.

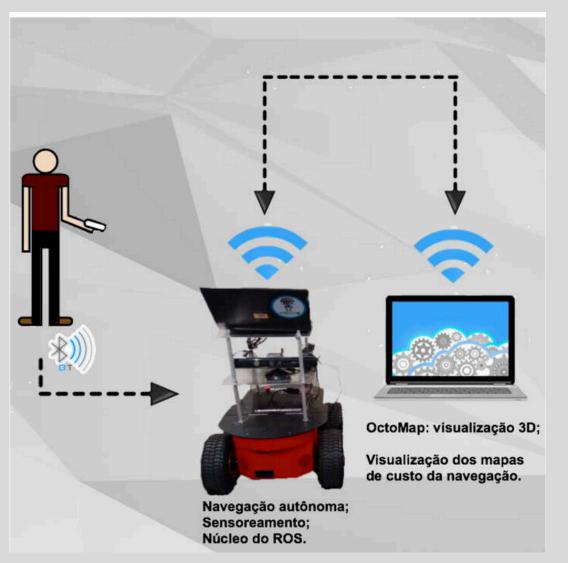


Figura 3 – Visão do Sistema.

Figura 4 – Sensores integrados.

Navegação Autônoma

O robô observa o ambiente e se localiza a partir da odometria, gerando um mapa dinâmico. O ROS, sistema que controla o robô, faz então medições sobre os dados coletados pelos sensores do robô e define **pontos de** referência. O SLAM é um conjunto de tarefas que permitem que um robô móvel se desloque de um ponto a outro identificando e evitando obstáculos no caminho de forma autônoma. As tarefas do SLAM[6] que possibilitam tal feito são: extração de pontos de referência, associação de dados, estimação de estado, atualização do estado e atualização dos pontos de referência.

Seguidor de pessoas

Os dados de distância adquiridos pelo kinect são usados por pacotes do ROS para identificar pessoas em uma área em frente ao robô e se locomover até elas.

Conclusões

O robô tem, com ajuda de pacotes estado-da-arte de visão computacional e de tratamento de dados, capacidade de cumprir várias das provas da Robocup@Home.

Agradecimentos

Os autores gostariam de agradecer ao suporte da Fundação Parque Tecnológico de Itaipu, que, em conjunto com a Fundação Araucária, fomentou o desenvolvimento do projeto. Gostaríamos também de agradecer a Universidade Tecnológica Federal do Paraná, pelo constante apoio durante o desenvolvimento do projeto.

Referências

- [1]. About ROS Página Oficial: http://www.ros.org/about-ros/.
- [2]. Site oficial Robocup@Home. Disponível em:
- [3]. D. HOLZ, J.R. del SOLAR, K. SUGIURA, S. WACHSMUTH, "On RoboCup@Home past, present and future of a scientific competition for
- service robots". Disponível em:
- [4]. ADEPT, Pioneer 3-AT Specifications. Disponível em: http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-P3AT-RevA.sflb.ashx... [5]. MICROSOFT, Develop Network: Kinect Sensor. Disponível em: http://msdn.microsoft.com/en-us/library/ hh438998.aspx.

[6]. S. RIISGAARD, M. R. BLAS, "SLAM for Dummies". Disponível em: http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-

robotics-spring-2005/projects/1aslam_blas_repo.pdf. [7] Octomap Package – ROS wiki page: http://wiki.ros.org/octomap