

Laboratório Avançado de Sistemas Embarcados e Robótica

UtBot @Home: Applications of Mobile Robotics in domestic environments

André Schneider de Oliveira (andreoliveira@utfpr.edu.br), João Alberto Fabro (fabro@utfpr.edu.br), Alexandre Guilherme Damm dos Santos (alexandre.2015@alunos.utfpr.edu.br), Danilo Henrique Santos (danilo.santos@ifsp.edu.br), Piatan Palar (kpiatan@gmail.com)

UTFPR – Federal University of Technology – Paraná – Curitiba, Brasil – www.utfpr.edu.br LASER – Advanced Laboratory of Embedded Systems and Robotics – www.laser.dainf.ct.utfpr.edu.br

Introduction

The robot UtBot@Home, equipped with sensors and provided of a control software called **Robot Operating System (ROS)** [1], aims to accomplish some tasks of the RoboCup@Home initiative[2], listed below:

1 - Speech and Person Recognition [3]: The robot has to identify unknown people and answer questions about them and the environment. This test focuses on human detection, speech recognition, and robot interaction with unknown people;

2 - Help-me-carry [3]: The robot must help bringing some objects into the arena from outside. This test focuses on safe, robust navigation, people following and navigation in unknown environments;

3 - **Restaurant** [3]: The robot is tested in a real environment such as a real restaurant or a shopping mall. This test focuses on online mapping, safe navigation in previously unknown environments, gesture detection, human-robot interaction.

Incorporation of a robotic arm

A robotic arm with 6 degrees of freedom (6 DOF) was installed in the robot's structure. The robotic arm segments are made of sturdy aluminum and the movement of the joints is performed by **six servo motors** [6]. The end effector is a gripper and the maximum reach of the arm is 460mm, enabling the accomplishment of the tasks proposed by RoboCup@Home.

Figure 1 - UtBot

Hardware

the The figure shows **UtBot@Home** robot, a mobile robot built starting from the **Pioneer 3-AT** robot [4]. In the construction of the UtBot was added a structure measuring 120mm of length, 120mm of width and 690mm of height, allowing the attachment of a tablet, responsible for Human-Machine Interaction, and a Microsoft Kinect sensor [5], used for the robot vision system. Finally, an Arduino Uno was incorporated to control the servo motors of the robotic arm.

Figure 2 - Robotic arm manipulating an object

Autonomous Navigation

The robot observes the environment and is located itself from the odometry, generating a dynamic map. The ROS makes measurements about the data collected by the LIDAR sensor [7], a 3D laser scanning, and defines reference points. The **Simultaneous Localization and Mapping (SLAM)** [8] is a set of tasks that allow a mobile robot to move from one point to another identifying and avoiding obstacles along the way in an autonomous way.

Conclusions

The UtBot robot has, with the aid of packages state-of-the-art computer vision and treatment of data, competence to accomplish several tasks of RoboCup@Home.

Recognition and Voice Synthesis

With the help of an Android application that uses a voice recognition API that connected to the robot through sockets it is possible to perform the communication between human and machine.

[1] About ROS. Available: http://www.ros.org/about-ros/
[2] Robocup@Home. Available: http://www.robocupathome.org/
[3] RASCON, Caleb et al. Robocup@Home 2018: Rule and regulations. Disponível em: http://www.robocupathome.org/rules/2018_rulebook.pdf
[4] Pioneer 3-AT. Available: http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-P3AT-RevA.sflb.ashx
[5] Kinect Sensor. Available: http://msdn.microsoft.com/en-us/library/hh438998.aspx
[6] Six-servo Robot Arm. Available: https://www.generationrobots.com/media/6-servo-robot-arm-manual.pdf
[7] How does LiDAR work? Available: http://www.lidar-uk.com/how-lidar-works/
[8] RIISGAARD, Soren; BLAS, Morten R. SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping. Disponível em: http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf