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Abstract— This TDP describes Apollo, a service robot under
development at UTFPR (Federal University of Technology -
Paraná - Brazil). This robot is being developed since 2013,
and participated in the Brazilian an Latin American Robotics
Competition (CBR/LARC) since 2014. The team participated
in every Brazilian and Latin American competitions since, both
in person (2013 2019, and again in 2022) and remotely (2020
and 2021). The team obtained the third place in both 2014 and
2022 Latin American competitions, and for the first time is
applying for participation in the world RoboCup competition.
The robot is based on the Pioneer 3-AT mobile base. In order to
execute all the tasks proposed by the Robocup@Home initiative.
“Apollo” has sensors, such as a LIDAR laser scanner, a Kinect
depth sensor, and a camera, that provide information necessary
for navigation, object and people recognition, environment
mapping and auto-localization. An innovative human-robot
interaction interface, using different facial expressions based on
simulated emotions, is also presented. The robot is capable of
executing the following Robocup@Home tasks: voice synthesis
and recognition, objects and people recognition, navigation, and
small objects manipulation. All the programming uses ROS
(Robot Operating System) Noetic, executing on a NUC onboard
computer, connected to two Arduino microcontrollers. The team
achieved a 3rd place in the 2022 Brazilian and Latin American
competition, among 9 competing teams, and thus is for the first
time applying for participation in the world Robocup.

I. INTRODUCTION

Robocup@Home is a competition that aims to foster the
development of robots that will help people in domestic
environment, being the biggest competition for service robots
on the planet [1] [2]. In order to perform household tasks, the
robotics fields of human-robot interaction, navigation, map
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construction on dynamic environments and computer vision
are developed, among many others [1].

To accomplish these tasks, a research robot is under con-
tinuous development by team UTBots@Home at UTFPR1:
”Apollo”, presented in Figure 1. This robot is composed of
a mobile base (Pioneer 3-AT), a manipulator with 4 degrees
of freedom, a LiDAR range finder, a screen to present the
”face” of the robot, speakers for verbal communication, and
a depth/RGB camera.

1HomePage of the Team: https://laser.dainf.ct.utfpr.
edu.br/doku.php?id=utbots_at_home

Fig. 1. “Apollo”, composed of a Pioneer 3-AT mobile base, with its
sensors (LiDAR, Kinect), the LCD display for simulated emotions, and
the manipulator.



The applications are running with ROS (Robot Operating
System), a set of software libraries and tools that help to
develop applications for robotics [3], that run on a Intel NUC
[5] embedded computer inside the robot. The control system
of the robots is responsible for acquiring and interpreting
various sensors and, from that data, make decisions to fulfill
the tasks. Experiments are being developed using a NVIDIA
Jetson Nano2 board, that will be included in the robot to
process just objects and person recognition tasks.

In this document, the partial results and expectations of
projects under development for the robot are presented.
Section 2 presents a description of the robot’s hardware,
including specifications and characteristics. The software
already developed, and what is still in development, is
described in section 3. Conclusions and future perspectives
are presented in section 4.

II. HARDWARE

A. Robot Specifications

The robot is based on a Pioneer 3-AT research robot:
this base weights only 12 Kg, with 12 Kg of payload, and
maximum speed of 0.7 m/s. Its autonomy is of 2 hours, with
3, 12 volts, standard batteries. Its dimensions are: 50 cm
wide, 50 cm deep and 28 cm high. The robot connects to
an external embedded computer via a serial-USB interface
allowing its connection to a ROS system (Figure 2).

A redesign is being planned, and a Jetson Nano [4] will
be coupled to the robot, in order to process computer vision
and other GPU-focused processes. The idea is to integrate
the Jetson Nano to the ROS network on the embedded NUC
computer [5].

B. “Neck” Support

A support built in aluminium (as seen in Figure 1) is the
”neck” of the robot. This support is 1.2 meters long, allowing
the positioning of the LCD Display and the Kinect sensor to
a height comfortable enough to allow interaction with people
(1.5 meters). In addition to that, an Android device is also
present, needed to capture the voice commands.

C. Sensors

A Kinect V.1 depth sensor has been incorporated, in order
to capture images and depth information. These data is
used to identify silhouettes of persons and objects, among
other functions [6]. In order to establish the communication
between the Kinect sensor and ROS the freenect package
was used. “Apollo” also has a YDLIDAR X4, which is a
low cost LIDAR sensor capable of 360 degrees distance
measurements [7]. The data generated by the Kinect and the
laser sensor are published in ROS topics.

D. Manipulator

The original model of the manipulator used in the robot
is a Beckman Coulter ORCA Robotic Arm [8], a planar
manipulator that has three rotational joints and can be seen

2https://developer.nvidia.com/embedded/jetson-nano-developer-kit

in Figures 1 and 2. To make the structure respond to the
desired commands, a process of retrofitting was carried out,
where the motors and encoders were connected to Arduino
Mega microcontrollers that allow the open programming of
the mechanism.

In addition to the three motors that define the degrees
of freedom of the structure, each joint is also coupled to a
quadrature encoder, that allows for the microcontrollers to
independently control each joint is in motion.

The quadrature encoder emits two pulses slightly out of
phase. This allows to infer the direction in which the motor is
rotating. Arduino microcontrollers use interruptions to sense
these pulses and infer the position of each joint.

Joints 1 and 2, respectively related to the manipulator’s
shoulder and elbow, are controlled by an Arduino that has
an H-bridge for each engine. Joint 3, related to the handle,
and the gripper are controlled in the same way by another
Arduino. Each joint has a PID control system that aims
to maintain the angle of the joint in the desired position
in opposition to external forces, in addition to allowing
smoother movements between one position and another. Both
Arduinos are connected to USB ports of the NUC computer,

Fig. 2. Side view of the robot subsystems mounted on top of the Pioneer
3-AT base.



via a hub. Through this connection, ROS commands are
received.

Customized ROS messages were implemented for sending
and receiving robot information. While the microcontrollers
receive the messages containing the desired angle in the
topic of the respective joint, it sends messages allowing the
monitoring of the pose of the structure.

As the encoders do not have memory of the location
where the joint stopped and also do not allow monitoring
the movements that occur when the structure is off, the robot
needs to perform a startup routine every time the system is
powered. This makes all the joints assume an initial position
and the control is done from these already known angles.

E. Connections

The general connections among the hardware components
are detailed in Figures 3 and 4.

III. SOFTWARE

A. ROS - Robotic Operating System

The robot is controlled via a Nuc computer with the
”Noetic” version of ROS, on the operating system Ubuntu
20.04 LTS. ROS allows the application of several tools,
libraries and conventions that simplify the development of
complex and robust tasks for robots [3]. Topics are data buses
through which nodes exchange messages, and multiple nodes
may subscribe to each topic (receiving its data) or publishing
to it (sending data).

B. Emotion Simulation

Emotions are simulated by the robot through faces, dis-
played according to the present situation, for a better visua-
lization of internal states of the robot, and better interaction
between the robot and people (Figure 5).

Emotions were based on Plutchik’s wheel of emotions [9].
A LCD screen running the ROS Image Viewer application
displays these faces by subscribing to the custom ROS
\face emotion topic. The emotions system is based on the
custom ros display emotions package [10], which runs a
ROS node that subscribes the \emotion topic and publishes
a image message to the \face emotion topic.

Figure 6 illustrates an emotion being displayed by the
robot through the screen.

C. Simultaneous Localization and Mapping

Odometry errors can lead to uncertainty in navigation. It
is important that the robot is able to correct its location
based on the feedback from sensors in real time. SLAM
(Simultaneous Localization and Mapping) [11] algorithms
can achieve this. Currently, the YDLIDAR readings and
the robot’s wheels odometry are feed to the standard ROS
navigation stack and move base is utilized to send navigation
tasks to the robot. By constructing a map of the environment
at the same time as it is updating the robot’s position, the
robot estimates it’s position and updates wheel velocity. To
accomplish this, SLAM has a number of tasks: extraction
of reference points, data association, state estimation, status

update, and reference point update. Parameters adjustments
and tests under different SLAM configurations are crucial
for improving navigation.

D. Voice recognition and synthesis

For speech synthesis, a custom ROS package called voztts
[12] has been implemented to interface custom nodes with
the MaryTTS Text-To-Speech System [13]. This package
works by running a ROS node that subscribes to the topic
\tts, and performs voice synthesis based on the specified
parameters. The configuration of the speech parameters en-
compasses several characteristics, such as speech speed, vo-
lume, pitch (lower or higher), the space between words, age
and intonation variation. By altering these parameters, the
speech characteristics can be defined in accordance with the
emotion displayed on its “face“. Therefore, the voice synthe-
sis is affected by the ros display emotions package, which
reconfigures the speech parameters according to the current
emotion. This process depends on the dynamic reconfigure
package, which allows you to change parameters on ROS
nodes without having to restart them.

E. Object Recognition

For object recognition, the darknet ros package [15] per-
forms the integration of the YOLOv3 neural network [14]
with ROS. Upon training the YOLOv3 model, a variety of
objects can be grouped under a certain class - for example,
we can label the same class to different instances of apples,
with different sizes and colors (green and red apples). The
darknet ros package works by subscribing to the Kinect RBG
image topic, so it can perform real-time detection, publishing
bounding-box and class messages.

The classes detected and the accuracy of the detection
depends on the number and quality of labeled images of the
dataset used for training. To improve the dataset quality, an
external apparatus that allows capturing of a large number
of images of each object has been developed [16]. This
system has two Logitech C920 cameras (stereovision) and
an ASUS Xtion depth sensor, which allows the capture of
2,600 RGB images by the camera and 2,600 point cloud
images, each one viewed by a slightly different angle and
distance. Therefore, it is possible to generate a large dataset
of every object, as well as a general 3D format of it.

For manipulation tasks, it is essential to estimate the object
3D position as well. The applied estimation method is based
on the intersection of 3D arrays in the environment’s 3D
space [17]. Its most significant singularity is that it requires
no prior knowledge about the 3D shape of the target object.

By identifying a point in the center of the visible face of
the object, and a point on the RGB-D sensor, a 3D array is
defined. By moving the robot, other 3D arrays are defined.
The method makes use of those 3D arrays to estimate a
point that represents the object’s 3D center. Experiments
have shown that this method performs with a mean euclidean
distance of 9.4 cm between the true 3D center of the object
and the estimated coordinate.



Fig. 3. Diagram for the logical communication connections of the hardware components

Fig. 4. Diagram for the power connections that feeds every hardware component



Fig. 5. Examples of faces developed.

The intention is to run these processes on the Jetson,
placed inside the robot, so the detection and 3D pose
calculations are faster.

F. Person Recognition

To perform the person recognition tasks, the RBG layer of
the Kinect can be evaluated by YoloV3 through darknet ros,
using weights trained to detect people. For some tasks,
the custom mediapipe track package implements MediaPipe
Pose [18] with ROS messages. The MediaPipe Pose proces-
ses body pose information and tracks the general ”skeleton”.
The mediapipe track package [19] performs tracking and 3D
position estimates by subscribing Kinect RGB and Depth
messages, and can publish the data to be processed by other
nodes.

Fig. 6. Simulated emotion presented on the face of the robot.

Some future work involves crowd processing (instances
that more than one person can be seen in the frame).
Considering that MediaPipe is limited to tracking one person
only, tracking a crowd can be done by processing every
darknet ros person bounding box. To identify a specific
person amongst a crowd, it is possible to extract a person’s
skeleton information beforehand through MediaPipe Pose
and then iterate every person bounding box comparing the
parameters. Testing and research is being done so this ideas
are improved and can be implemented.

Fig. 7. YOLO v3 model detecting a custom set of objects real-time with
ROS.



G. Manipulation

In a new project involving optimization and alternative
robotic kinematics techniques, the retrofit process of the
manipulator arm was carried out. The manipulator has three
rotational joints and a claw-like end effect for manipulating
objects.

Considering that the mean error of the position estimation

Fig. 8. YOLO v3 model detecting people real-time with ROS.

Fig. 9. MediaPipe Pose detecting the person’s skeleton with ROS.

algorithm is too big to allow for a correct pick-up of objects
by the claw of the robot, it is planned to fix a Realsense
F200 RGB-D sensor (which records distances at a resolution
of 480p [21]) near the arm’s handle, through a 3D printed
support. Thus, this sensor can observe the operation of the
claw, and perform new position estimates as the arm moves.
The movement creates new challenges related to the position
of the camera in the 3D space and perspective issues, that
must be considered.

The attached RealSense F200 is enough to detect different
surfaces in the manipulator’s working space. This data will
be sent as a PointCloud via ROS network.

The manipulator movements are measured through quadra-
ture encoders, limited by limit switch sensors and are also
sent through the ROS network.

Set-point angle commands for each joint are sent through
ROS where forward and inverse kinematics calculations are
computed using Clifford’s Algebra. Such techniques seek to
implement more efficient calculation tools using the alge-
braic advantages of the dual quaternion, which are a subset
of Clifford’s Algebra. Clifford’s Algebra is also used to relate
the objects detected by the camera to points and planes that
constitute a collision and manipulation control system.

H. Simulation

A scene containing the Apollo robot and a set of obstacles
was developed for the CoppeliaSim simulation platform
(version 4.2.0) 3, which allows the interfacing of all ROS
nodes at an entirely virtual environment. Figure 10 shows
the 3D model of the robot.

The robotic arm Beckman Coulter ORCA was replicated
in a 3D model, and put together with the Pioneer 3-AT
mobile base model already available at the simulator. In this

3CoppeliaSim robotics simulator can be download, free of charge for
non-commercial applications at http://www.coppeliarobotics.com

Fig. 10. Apollo’s simulation on CoppeliaSim.



case, 3 joint motors were applied (shoulder, elbow and wrist).
They receive angular values from ROS topics responsible for
the movement of the arm’s joints.

CoppeliaSim’s built-in model BaxterGripper was used in
order to simulate the real gripper. As for the LIDAR sensor, a
pre-existing model was used (hokuyo). It allows the detection
of distances to nearby obstacles.

Aiming to simulate the operator’s vision and reproduce
the executed processes with the highest precision, a RGB
camera was placed following all dimensions used in the
physical robot.

IV. CONTRIBUTIONS TO THE COMMUNITY

The main contributions to the Robocup@Home commu-
nity are listed bellow:

• An innovative HRI (Human-Robot Interface) composed
of packages to display a face with ”simulated emotions”
[10];

• A system that allows for the creation of a dataset of
image and depth measures of several objects of interest
for Robocup@Home [16];

• A ROS package that allows for the use of the MediaPipe
”skeletization” solution with ROS [19];

• A complete simulation environment that allows for
experiments with our robot and its sensors and actuators
[20].

V. CONCLUSION AND FUTURE WORK

The team is capable of fulfilling several core tasks of
the Robocup@Home category successfully. Among the work
under development are more accurate recognition of voice
commands, more sophisticated person recognition methods
and position estimate corrections, as well as improvements
in the manipulator arm. Furthermore, correctly integrating
the robot’s subsystems is an ongoing challenge as its ef-
fectiveness, and complexity, grows. Finally, the simulation
ambient has been an important addition that enables multiple
simultaneous testing without over-stressing the robot.
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ANNEX

A. Hardware

• Computing
– Intel Nuc (https://www.intel.com/
content/www/us/en/products/
details/nuc.html)

• Navigation
– P3-AT Mobile Base (https://robots.ros.
org/pioneer-3-at/)

– YDLIDAR X4 (https://www.ydlidar.
com/products/view/5.html)

– FTDI232 Module (https://
components101.com/modules/
ft232rl-usb-to-ttl-converter-pinout
-features-datasheet-working-
application-alternative)

• Human-Robot Interaction
– Generic Android Device
– Generic LCD Monitor 10.1”, HDMI Interface, 12V

• Vision
– Microsoft Kinect V1

• Manipulation
– ORCA Beckman Coulter Robotic Arm (https:
//www.ebay.com/itm/161939304997)

– 2 Arduino MEGA (https://
store.arduino.cc/products/
arduino-mega-2560-rev3)

– 2 Driver Monster Shield (https:
//protosupplies.com/product/
vnh2sp30-dual-monster-motor-shield/)

– MG996R Servo Motor (https:
//components101.com/motors/
mg996r-servo-motor-datasheet)

• Power Source
– 5 12V 9Ah Batteries
– 12V Voltage Regulator
– 19V Voltage Regulator

B. Software

• Navigation
– move base (https://wiki.ros.org/move_
base)

– ydlidar (https://github.com/YDLIDAR/
ydlidar_ros_driver)

– rosaria (https://wiki.ros.org/ROSARIA)
• Human-Robot Interaction

– MaryTTS (http://mary.dfki.de/)
– Ros Voice Recognition App (https://index.
ros.org/p/jsk_android_apps)

– utbots home voicerecog* (https://github.
com/UtBotsAtHome-UTFPR/utbots_
voice)

– voztts* (https://github.com/
UtBotsAtHome-UTFPR/voztts/tree/
1c8446048c5d4a1000a5e4b1c4efc9d662c23069)

– ros display emotions* (https://github.
com/UtBotsAtHome-UTFPR/display_
emotions)

– dynamic reconfigure (http://wiki.ros.
org/dynamic_reconfigure

• Vision
– freenect launch (https://wiki.ros.org/
freenect_launch)

– darknet ros (Yolov3) (https://github.com/
leggedrobotics/darknet_ros)

– Mediapipe Pose (https://google.github.
io/mediapipe/solutions/pose)

– mediapipe track* (https://github.com/
UtBotsAtHome-UTFPR/mediapipe_
track)

• Manipulation
– Arm and Claw Firmware* (https:
//github.com/UtBotsAtHome-UTFPR/
utbots_manipulation)

• Simulation
– CoppeliaSim (https://www.
coppeliarobotics.com/)

– Apollo 3D Model*(https://github.com/
UtBotsAtHome-UTFPR/P3AT-D)


